
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2011

A performance analysis of Xen and KVM
hypervisors for hosting the Xen Worlds Project
Charles David Graziano
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Graziano, Charles David, "A performance analysis of Xen and KVM hypervisors for hosting the Xen Worlds Project" (2011). Graduate
Theses and Dissertations. 12215.
https://lib.dr.iastate.edu/etd/12215

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F12215&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F12215&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F12215&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F12215&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F12215&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F12215&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=lib.dr.iastate.edu%2Fetd%2F12215&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/12215?utm_source=lib.dr.iastate.edu%2Fetd%2F12215&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

A performance analysis of Xen and KVM hypervisors

for hosting the Xen Worlds Project

by

Charles David Graziano

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Co-majors: Information Assurance

Computer Engineering

Program of Study Committee:

Thomas E. Daniels, Major Professor

Douglas Jacobson

Joseph Zambreno

Iowa State University

Ames, Iowa

2011

Copyright c© Charles David Graziano, 2011. All rights reserved.

www.manaraa.com

ii

TABLE OF CONTENTS

LIST OF TABLES . iv

LIST OF FIGURES . v

ABSTRACT . vi

CHAPTER 1. OVERVIEW . 1

1.1 Introduction . 1

CHAPTER 2. WHAT IS VIRTUALIZATION 3

2.1 Types of x86 Virtualization . 4

2.1.1 Application Virtualization . 4

2.1.2 Operating System Virtualization . 5

2.2 Components of Virtualization . 6

2.2.1 Hypervisor . 6

2.2.2 Guest . 7

2.3 Why Virtualize . 7

2.3.1 Infrastructure as a Service . 8

CHAPTER 3. THE HYPERVISORS . 9

3.1 Xen . 9

3.2 Kernel-based Virtual Machine . 10

CHAPTER 4. XEN WORLDS BACKGROUND 12

4.1 Why KVM . 12

4.2 Major Feature differences . 13

www.manaraa.com

iii

CHAPTER 5. MIGRATING TO KVM . 15

5.1 Migrating Middleware . 15

5.2 Migrating User Interface Pdmenu . 16

5.3 Migrating Labs VMs . 16

CHAPTER 6. EVALUATING KVM’S PERFORMANCE 18

6.1 Phoronix Test Suite . 18

6.2 Xen and KVM with and without VirtIO . 19

6.2.1 Ideal lines . 19

6.2.2 Apache Benchmark . 20

6.2.3 John the Ripper . 22

6.2.4 Unpack . 23

6.2.5 Stream . 24

6.2.6 OpenSSL . 26

6.3 Simulated Users . 28

6.3.1 Goal of the Expect Scripts . 30

6.3.2 The Test Environment . 31

6.3.3 Concurrent Users Test . 31

6.3.4 Single User with varying John the Ripper 32

6.3.5 Multi User consistent John the Ripper 34

6.3.6 KVM: Increasing John the Ripper . 35

6.4 Results Conclusion . 36

CHAPTER 7. SPECIAL XEN WORLDS CONSIDERATIONS 37

7.1 Disk Utilization . 37

7.2 Deployment Time . 38

7.3 Per-User Customization of Pdmenu . 39

CHAPTER 8. CONCLUSION & FUTURE WORK 40

BIBLIOGRAPHY . 42

www.manaraa.com

iv

LIST OF TABLES

6.1 Apache Benchmark Data: Requests per Second (Average per VM) and

Standard Deviation . 21

6.2 John The Ripper Benchmark Data: Blowfish Computations per Second

(Average per VM) and Standard Deviation 22

6.3 Kernel Unpack Benchmark Data: Time (Seconds) to Extract (Average

per VM) and Standard Deviation . 24

6.4 Stream Benchmark Data: MegaBytes per Second (Average per VM)

and Standard Deviation . 25

6.5 OpenSSL Benchmark Data: RSA Computations per Second (Average

per VM) and Standard Deviation . 27

6.6 Sample typical and erroneous results from the OpenSSL tests 27

6.7 OpenSSL Benchmark Data: with and without Kernel parameter 28

6.8 Simulated Concurrent User Responsiveness Data: Average execution

time (sec) and Standard Deviation . 31

6.9 Single Simulated User with varying John the Ripper: Average exection

time (sec) . 33

6.10 Consistent (4) John the Ripper, varying Simulated Users: Average ex-

ection time (sec) . 34

6.11 KVM only: varying Simulated Users and varying John the Ripper: Av-

erage exection time (sec) . 35

www.manaraa.com

v

LIST OF FIGURES

3.1 Depiction of the Xen hypervisor and how dom0 and domUs are layered

on top of the hypervisor. 10

3.2 Depiction of how virtual machines appear as a regular system process

to the KVM hypervisor. 11

5.1 Screenshot of the Pdmenu interface . 16

6.1 Apache Benchmark Results . 21

6.2 John the Ripper Benchmark Results 22

6.3 Kernel Unpack Benchmark Results . 23

6.4 Stream Benchmark Results . 25

6.5 OpenSSL Benchmark Results . 26

6.6 OpenSSL Benchmark with and without Kernel parameter 29

6.7 Simulated Concurrent User Responsiveness 32

6.8 Single Simulated User, varying John the Ripper 33

6.9 Consistent (4) John the Ripper, varying Simulated Users 34

6.10 KVM only: varying Simulated Users and varying John the Ripper . . . 35

7.1 Disk usage requirements KVM copy-on-write vs Xen full copy 38

www.manaraa.com

vi

ABSTRACT

Virtualization of the operating system has become an important consideration in the cloud,

corporate data center, and academia. With the multitude of available virtualization platforms,

careful consideration is needed for selecting the right solution for a specific virtualization ap-

plication. This research focuses on an analysis of two open source virtualization platforms or

hypervisors: Xen and Kernel-based Virtual Machine (KVM). Evaluations are conducted on the

basis of overall performance and throughput, virtual machine performance isolation and scala-

bility for use as a host for the Xen Worlds Project. In doing so, the existing Xen Worlds Project

infrastructure, middleware, and virtual machines are migrated to KVM to provide a test bed

for the evaluation using a benchmark suite and a set of scripts to simulate user behavior.

www.manaraa.com

1

CHAPTER 1. OVERVIEW

1.1 Introduction

In recent years virtualization has gained popularity in many different areas such as server

consolidation, information security and cloud computing. This is largely due to an increase

in hardware performance of about ten fold in the past decade and the goal to reduce capital

and operational costs within the data center. [4] Virtualization can help IT managers fully

maximize the potential of their hardware investment by increasing the number of applications

and operating systems running on a single physical server. Similar goals exist within academia.

Several projects exist that make use of virtualization in one form or another to provide

a virtual lab environment of varying levels of sophistication and scalability to students. The

primary goal for all of them; to reduce the physical hardware necessary to administrate and

maintain computer security lab assignments. When developing such a platform for academia

several factors become must also be considered. Things such as the hardware requirement,

guest operating systems, type of assignments, and how it is to be administrated and accessed

become very important. In this day in age the method of providing virtualization is key. There

are a multitude of platforms and options to consider each having their own advantages.

In this thesis the performance characteristics of two different virtualization platforms: Xen

and Kernel-based Virtual Machine (KVM) will be analyzed specifically for their use as a virtu-

alization platform for the Xen Worlds Project. [1] Chapter 2 will give background information

on virtualization and Chapter 3 will explain the two platforms be assessed. Chapters 4 and

5 will give a brief background on the Xen Worlds Project and platform, feature benefits of

KVM followed by the process undertaken to migrate to KVM. Multiple performance evalu-

ations comparing the two hypervisors are performed in Chapter 6. Chapters 7 outlines Xen

www.manaraa.com

2

Worlds specific features enhancements provided by KVM followed by possible future directions

and conclusion in Chapter 8.

www.manaraa.com

3

CHAPTER 2. WHAT IS VIRTUALIZATION

Virtualization can trace its roots back to the mainframes of the 1960’s and 1970’s. While

the definition of virtualization has evolved since then initially it was considered a method of

logically dividing mainframes to allow for multiple applications to run simultaneously. Prior

to this time, systems could only execute a single application at a time. Due to the high cost

of these mainframe systems many organizations found it difficult to justify the investment for

a system which could only due one thing at a time. [10] This changed with the advent of the

VM mainframe from IBM and has continued to evolved since.

With the advent of relatively inexpensive x86 based systems in the 1990s and the adoption of

Windows and Linux operating systems lead to a shift away from mainframe based applications

to the more distributed client-server based applications. It was now commonplace for these

systems to run multiple applications simultaneously although not in the sense that it was done

in the mainframes. It wasn’t until the early 2000s where virtualization began to evolve as x86

based systems became more powerful.

As corporate data centers began to grow so did the cost of supporting the high number of

systems. Especially as applications were generally dedicated their own server to avoid conflicts

with other applications. This practice caused a waste in computing resources as the average

utilization for many systems was only 10% to 15% of their possible capacity. [10] It’s at

this point many companies started looking at virtualization for a solution. Unfortunately,

the now common x86 systems were not designed with virtualization support in mind which

caused challenges when attempting to handle some of the privileged instructions in the x86

architecture.

Throughout the 2000’s several solutions were developed by companies and the open-source

community which were able to provide a method of handeling the privileged instructions in one

www.manaraa.com

4

way or another and allow for multiple operating system to run simultaneously on a single x86

based system. This lead to a change in the definition of virtualization to the all encompassing:

Virtualization is a framework or methodology of dividing the resources of a

computer into multiple execution environments, by applying one or more concepts

or technologies such as hardware and software partitioning, time-sharing, partial or

complete machine simulation, emulation, quality of service, and many others. [15]

2.1 Types of x86 Virtualization

As x86 virtualization continues to develop many are looking at virtualization on more

than just servers. Virtualization at the desktop and applications virtualization are both areas

continuing to grow.

2.1.1 Application Virtualization

Application virtualization brings the virtualization up a layer from the operating system

making the applications independent from the underlying operating system. This becomes

useful when using legacy applications on new operating systems or when crossing flavors of

operating systems. When the virtualized application is executed it is fooled into thinking it

is running on the original supported operating system. Typically this requires that a small

runtime environment be installed on the system wishing to run the virtual application. This

approach offers several advantages compared to running the application natively including:

• Allowing for multiple versions of applications to be used on the same system at the same

time.

• Simplifying compatibility issues with other applications allowing potentially incompatible

applications to coexist on the same system.

• Simplifying application deployment and upgrades helping maintain consistency through-

out an organization.

www.manaraa.com

5

• Increasing security by removing the need for end users to have Administrator access on

their workstation.

2.1.1.1 Application streaming

This sub-type of application virtualization can allow for the desktop PC to be completely

removed and replaced with a thin client with network access. Instead of running applications

locally, either native or virtual, this practice allows for applications to be executed on servers

within the datacenter and enabling users to interface with them from their workstations and

many times outside the organization via the internet. This allows for better allocation of

fiscal and computational resources as end user workstations can be replaced with an relatively

inexpensive thin clients. The savings can then be used within the data center on shared server

grade infrastructure to host the applications.

2.1.1.2 Virtual Desktop

Similar to application streaming, virtual desktop allows for the full desktop operating system

to be virtualized within the data center and presented to the end user via a thin client. Unlike

application streaming the user can be given a virtual desktop instance which they can customize

to suit their needs but still have it running on the shared infrastructure within the datacenter.

The users are able to interact with the virtual desktop the same way they do with a traditional

desktop. Unlike a traditional desktop a virtual desktop can be easily made accessible from

anywhere via the internet.

2.1.2 Operating System Virtualization

The more widely thought of, operating system virtualization, allows for multiple operating

system instances to run simultaneously on a single physical machine. While it is the base for

Virtual Desktops, it was initially designed and primarily used within the data center to virtu-

alizes servers to increase the physical hardware’s utilization. It is also used on workstations to

allow users to run multiple operating systems on their machines. This can be useful in devel-

opment environments where software can be tested on multiple operating system instances, in

www.manaraa.com

6

operating system evaluations, or when a user occasionally needs access to a alternate operating

system. It is this type of virtualization for which Xen and KVM are used and is being evaluated

in this study.

2.2 Components of Virtualization

2.2.1 Hypervisor

The hypervisor, also known as a Virtual Machine Monitor (VMM) is the software layer

which enables virtualization. It is responsible for creating the virtual environment on which

the guest virtual machines operate. It supervises the guest systems and makes sure resources

are allocated to the guests as necessary. Generally hypervisors are classified into one of two

categories; Type 1 and Type 2.

2.2.1.1 Type 1

The Type 1 hypervisor is considered a native or bare metal hypervisor. This type of hyper-

visor is the lowest level hypervisors, running directly on the host hardware. It is responsible for

allocation of all resources (disk, memory, CPU, and peripherals) to its guests. These hypervi-

sors typically have a rather small footprint and do not, themselves, require extensive resources.

Occasionally, they have very limited driver databases limiting the hardware on which they can

be installed. Some also require a privileged guest virtual machine, known as a Domain-0 or

Dom0, to provide access to the management and control interface to the hypervisor itself. The

Type 1 hypervisor is what is most typically seen in the server virtualization environment.

2.2.1.2 Type 2

The Type 2 hypervisor requires a full host operating system in order to operate. That is to

say that it is installed on top of the host operating system. This has some advantages in that

it typically has fewer hardware/driver issues as the host operating system is responsible for

interfacing with the hardware. Type 2 hypervisor can be used for application portability such

www.manaraa.com

7

is the case for the Java Virtual Machine (JVM) or to run operating systems. The downside

being additional overhead can cause a hit on performance compared to Type 1 hypervisors.

2.2.2 Guest

The guest, whether an application or an operating system, is what is being virtualized on

top of the hypervisor. In some cases an operating system is able to run native and unaltered on

the hypervisor necessarily knowing it is virtualized. Other times, depending on the hypervisor,

the guest operating systems need special drivers or to be specifically designed to be run on the

hypervisor.

2.3 Why Virtualize

Virtualization offers many advantages over traditional infrastructure in a wide variety of

applications. Apart from the increasing host utilization through server consolidation it also

offers many side benefits as well. These range from reducing fiscal costs to the ease of managing

and deploying additioanls systems in a virtual infrastructure. Many virtualization products

allow for a specific guest to be easily duplicated which can be useful for testing how software

updates or modifications can affect a given system without affecting production systems. Online

or offline migration is useful in the event that a specific physical host needs to be upgraded

or replaced. Migration helps to reduce or eliminate downtime as the virtual machines can

be moved temporarily or permanently to a different host transparent to the guest operating

system. Disaster recovery efforts can be greatly simplified through the use of virtualization.

In the event of a disaster, backups of the virtual machines can be easily brought up in a new

location on different hardware helping to minimize downtime.

Even with all of the advantages there are still some downsides to virtualization. For instance,

virtual machines must share resources with other virtual machines on the same physical system.

Applications with high disk or CPU utilization do not necessarily perform well on a system

where they must share resources. This problem can be aided by only running a single one

of these high utilization applications per physical host. This approach allows for the same

portability advantages of the other virtual systems while minimizing the performance hit. This

www.manaraa.com

8

largest problem comes from applications which need access to special physical peripherals.

While some virtual platforms may have methods of passing physical peripherals to its virtual

machines but then the guest will be restricted to operating on a that specific host.

2.3.1 Infrastructure as a Service

As system virtualization becomes more popular and powerful several providers have built

virtual ’cloud’ environments within their own data centers and lease space to other organiza-

tions. This practice has become known as Infrastructure as a Service (IaaS). Instead of going

through the cost of building their own data centers, IaaS allows organizations to lease compute

power from one or more data centers built by one or more providers typically on a per-use basis.

This model removes the cost of housing, maintaining, and running the physical hardware from

the end user and places it on the cloud provider. It does however, allow an organization to

quickly scale and reduce it usage as their situation requires.

IaaS has its disadvantages primarily in terms of privacy and security. In order to make use

of IaaS company data must be stored or at least accessible from that cloud. This means the

data must leave the organization and becomes an important consideration if the organization

is subject to one or more data protection laws or regulations. When choosing a IaaS provider,

the organization should verify the provider has the necessary steps in place to comply with the

necessary laws and regulations.

www.manaraa.com

9

CHAPTER 3. THE HYPERVISORS

3.1 Xen

The Xen hypervisor is an established Type 1 or bare metal hypervisor which runs directly

on the host hardware. Xen is well known for its use of paravirtualization and near-native

performance. [5] The Xen hypervisor is managed by a specific privileged guest running on the

hypervisor known as Domain-0 or Dom0. Dom0 is a specially modified Linux kernel which is

started by the Xen hypervisor during initial system start-up. It is responsible for managing

all the aspects of the other unprivileged virtual machine or Domain-Us (DomU) that are also

running on the hypervisor: see Figure 3.1.

There can be one or more DomU guests running but none of them have direct access to

the physical hardware but instead are required to make CPU, I/O and disk requests to the

Xen hypervisor. Originally, DomU guests required a modified kernel ported specifically to run

on the Xen hypervisor. This practice, known as paravirtualization (PV), has the advantage

that the guests are aware that they are running on a hypervisor and thus do not require the

overhead associated with emulating hardware in order to operate. The normally privileged

kernel instructions, such as memory and CPU management, are converted to ”hypercalls” in

a paravirtualized environment and easily executed by the hypervisor instead. PV allows for

guests to operate on host systems which do not have CPU hardware virtualization extensions.

[8] PV Xen DomU support is now included within the upstream Linux kernel, however, Dom0

support is not. This makes it much easier for linux to be used as a guest than a host system.

While initially only supporting PV Xen now supports the use of new virtualization proces-

sor extensions added to the x86 architecture. Known by Xen as Hardware Virtual Machine

(HVM) this allows for unmodified guest operating systems to be virtualized on Xen hypervisor.

www.manaraa.com

10

Figure 3.1 Depiction of the Xen hypervisor and how dom0 and domUs are layered on top of
the hypervisor.

However, HVM requires processors which specifically support the hardware virtualization ex-

tensions (Intel VT or AMD-V). The virtualization extensions allow for many of the privileged

kernel instructions which in PV were converted to ”hypercalls” to be handled by the hardware

using the trap-and-emulate technique. This is similar to the classic Full Virtualization [8] but

instead of being done by software it is done within the hardware to increase performance.

3.2 Kernel-based Virtual Machine

Kernel-based Virtual Machine (KVM) is a relatively new hypervisor that has gained mo-

mentum and popularity in the past few years. While not as well known as Xen, it has the

distinction of having both host and guest support incorporated into the upstream Linux 2.6.20

kernel released in January 2007. KVM is implemented as a kernel module which, when loaded,

converts the kernel into a bare metal hypervisor. [7] KVM was designed and implemented after

the development and release of hardware assisted virtualization extensions and has been opti-

mized to take full advantage of these extension rather than building them in as an afterthought.

Due to this, KVM requires that the Intel VT or AMD-V extensions be present and enabled

on the host system. By converting the Linux kernel into the hypervisor KVM developers are

www.manaraa.com

11

able to take advantage of and build on many components which are already present within the

kernel such as the memory manager and scheduler instead of building them from scratch.

Being a loadable kernel module and part of the upstream kernel patching and updating KVM

is much easier when compared to Xen. The split architecture of Xen requires maintenance

of both the Xen hypervisor and Dom0. Additionally, any changes or enhancements to the

upstream kernel must be back-ported to Xen Dom0s increasing the burden on vendors.

KVM is architected such that, from the view of the host, each virtual machine is a standard

Linux process, see Figure 3.2; managed, scheduled and secured as a standard Linux process.

A modified version of QEMU is used to provide emulation for devices such as the BIOS, PCI

bus, USB bus, disk controllers and network cards.

Figure 3.2 Depiction of how virtual machines appear as a regular system process to the KVM
hypervisor.

While not required, KVM can be used with standard paravirtualized VirtIO drivers installed

on the guest. VirtIO is a standard framework allowing for guests to be more easily transferred

between hypervisor platforms supporting VirtIO. This allows for increased I/O performance

for network and block devices when compared to regular emulated devices. VirtIO drivers are

included in Linux kernels after 2.6.25 and are also available for Microsoft Windows guests as

well.

www.manaraa.com

12

CHAPTER 4. XEN WORLDS BACKGROUND

Xen Worlds is an environment developed at Iowa State University for use by graduate and

undergraduate classes. Its goal is to provide students with a network of virtual machines (called

a Xen World) on which to perform class assignments and lab work. It is accessible on a 24/7

basis by both on-campus and off-campus students via SSH. Each Xen World is segregated from

every other Xen World as well as the outside world (internet). This allows students to be

given root access to their Xen Worlds while preventing access to other students Worlds and the

hypervisor/Dom0.

Xen Worlds makes use of several open source applications in order to provide the lab

environment to students. The current environment uses the Xen hypervisor included with

Red Hat Enterprise Linux 5.3 (RHEL) as its virtualization platform. Custom Xen Worlds

Middleware was written to handle management and deployment of Xen Worlds assignment.

Additionally, Pdmenu, accessed via SSH, is used to provide students with an easy to use

interface for accessing and managing their Xen Worlds virtual machines. The developers have

created several information assurance related assignments using RHEL 5.3 paravirtualized on

the Xen hypervisor. [1]

4.1 Why KVM

The new release of Redhat Enterprise Linux, RHEL 6, no longer supports running as a

Xen dom0. [13] Instead Redhat has decided to migrate to KVM as its supported virtualization

platform in RHEL6 [7]. Many different performance evaluations have been performed on various

virtualization platforms, including Xen and KVM, using a variety of different evaluation criteria.

The transition to KVM in RHEL 6 led to the interest in evaluating KVM’s suitability as a host

www.manaraa.com

13

for the Xen Worlds Project environment as well as options for further development and feature

enhancements.

4.2 Major Feature differences

Several features exist within KVM which either do not exist in Xen or were not implemented

in the original Xen Worlds environment. For example, the method in which memory is allocated

to the virtual machines is very different. In Xen, if a guest is provisioned 2GB of RAM when

that guest is started 2GB of RAM is immediately allocated to that guest and cannot be used

by any other guest. KVM does soft provisioning where memory is allocated to the guest when

it needs it up to the provisioned amount. This can allow for memory overcommit, where more

memory is assigned to virtual machines than what is available on the system.

KVM has a couple of ways of dealing with memory overcommit. Since a guest in KVM is a

regular Linux process some memory pages can swapped out to disk. In this case the host picks

the memory pages and writes them to disk. This can have obvious performance consequences

when the guest needs to access memory the host will need to read the memory which has been

swapped to the disk. Through the use of VirtIO drivers, the KVM host can work with the

guests to request that the guests shrink their cache to help free memory. This approach, known

as ballooning, requires that the guests cooperate with the hosts request to shrink their cache.

KVM also has the ability to do Kernel Samepage Merging (KSM). KSM works by merging

identical memory pages from multiple guests into a single read-only memory region removing

duplicate copies. In the event one of the guests attempts to write to one of these pages,

a writeable copy is created for that guest to modify. The KSM approach works best when

guests are running the same operating system and similar applications in order to maximize

the number of identical memory pages. [6]

Both Xen and KVM support multiple methods of storing guest’s virtual disks. Xen Worlds

uses a flat raw image file for each guest. When a Xen Worlds assignment is deployed, this

requires a full copy be created for each guest. This is time consuming and requires significant

disk space. KVM is able to utilize a copy-on-write image file format. This allows deployed

guests to utilize a base image as a read-only backing file while writing changes to a guest

www.manaraa.com

14

specific write enabled overlay file. This practice drastically reduces the required disk space and

has the added bonus of supporting guest snapshots allowing users to easily revert their guests

to a previous state. While newer versions of Xen do support copy-on-write image files, support

at the time of Xen Worlds original development support was very lacking. [3]

www.manaraa.com

15

CHAPTER 5. MIGRATING TO KVM

5.1 Migrating Middleware

The Xen Worlds Middleware is a program written in Python which manages the deploy-

ment of Xen Worlds assignments. In order to be compatible with KVM, the middleware had to

be modified to replace the existing Xen hypervisor specific commands with their KVM equiva-

lent. Multiple modifications were also made in the way assignments were deployed. First, the

middleware was adapted to utilize copy-on-write images for the guest virtual machines.

Additionally the method in which individual virtual machines are customized for each user

and the lab was altered. Previously, virtual machine specific commands such as setting the

hostname and IP addresses were built into an Expect script and executed on each guest during

the lab deployment. This required that each virtual machine be started during the deployment

phase in order for the Expect script to be executed. Since all current lab virtual machines are

built on a Red Hat environment this approach was changed to use the libGuestFish Python

library to directly access the copy-on-write image files. Instead of using an Expect script the

same commands are placed in the rc.local file to be executed the first time the virtual machine

is started. After the customizing the system the extra commands are removed from the rc.local

file.

The last feature modification to the middleware was the addition of snapshots, a feature

of the copy-on-write image files. After configuring the virtual machine a snapshot is created.

Previously, if a user messed up in a way that could not be easily fixed they had to contact the

instructor to re-deploy their virtual machine. This snapshot feature allows the user to easily

revert their virtual machines back themselves.

www.manaraa.com

16

5.2 Migrating User Interface Pdmenu

Xen Worlds uses Pdmenu to provide users with a simple menu driven method of accessing

their Worlds as seen in Figure 5.1. The configuration file driving Pdmenu was updated to

support KVM and it was enhanced to enable the user driven ”revert to snapshot” feature as

well as on the fly generation of the menu. Previously, the Pdmenu configuration had to be

manually modified by the instructor in order to allow users to access new worlds. A side effect

of this is that if multiple assignments were deployed to different subsets of users, every user

would be given the same menu interface. Pdmenu has been updated to generate a menu on the

fly automatically customized to each user. This modification makes it so that each user can

only see Worlds that have been assigned to him/her helping to alleviate confusion on the side

of the user and instructor.

Figure 5.1 Screenshot of the Pdmenu interface

5.3 Migrating Labs VMs

In order to make the KVM implementation of Xen Worlds usable the various labs needed

to be migrated to KVM as well. Two different approaches were taken to transfer the existing

labs to the KVM environment; rebuild the lab and a virtual-2-virtual (v2v) conversion.

The easiest method of transferring the lab virtual machines to KVM was to rebuild them

from scratch as a KVM virtual machine. This also allowed for simple installation of KVM

www.manaraa.com

17

specific packages such as the VirtIO drivers and the acpid daemon to enhance disk and net-

work throughput and allow for graceful OS shutdowns, respectively. Additionally, lab specific

application and source files could be transferred and compiled on the new virtual machine via

the same KickStart file that was executing the install, further simplifying installation. The

newly rebuilt virtual machines were also upgraded from RHEL 5.3 on Xen to RHEL 6, which

is supposed to be more highly optimized to run well on KVM [6].

Unfortunately, not all labs could be easily transferred to KVM. The PirateSoft Lab, where

students ”traverse a fictitious company network (PirateSoft) and find the various parts of a

secret project currently under development” [1] could not be rebuilt on KVM. This lab consists

of a network of seventeen ”company” machines and student machines. The student machines

were rebuilt to RHEL 6 however the ”company” machines were too specifically configured with

special ”flags” in various locations on various machine to make rebuilding an infeasible option.

Instead a v2v utility available from Red Hat [6] was used to migrate virtual machines from Xen

to KVM was used. The program was largely successful however the boot loader (grub) and

various other packages needed to be manually updated after the conversion to support some of

KVM’s features.

www.manaraa.com

18

CHAPTER 6. EVALUATING KVM’S PERFORMANCE

Several different tests were performed on both the Xen and KVM environments in order to

evaluate their performance differences and KVM’s suitability to host the Xen Worlds environ-

ment. The evaluations were done using two Dell PowerEdge servers each with two dual-core

Xeon processors running at 1.6GHz with 32GB of memory and disks configured in a RAID-5

array. One server is running the current Xen Worlds environment consisting of RHEL 5.3 64bit

running Xen hypervisor version 3.1.2 while the other server is running RHEL 6 64bit with

KVM. Two different classes of performance tests were executed. One to test the overall perfor-

mance of the hypervisors under various levels of load and another to examine how increasing

the number of deployed Worlds on a system can affect the interactive responsiveness of other

Worlds.

6.1 Phoronix Test Suite

The Phoronix Test Suite (PTS) [12] is an open source benchmark platform which was used

to benchmark and compare various system attributes. Of the multitude of tests and profiles

available five were chosen to measure various performance attributes important in a virtual

environment. These attributes include CPU usage, disk access rate, memory access rate, and

how well the hypervisor is able to handle high loads distributed across several virtual machines

running simultaneously.

The five PTS benchmarks which were selected are:

• Apache benchmark: measures how many requests per second a given system can sustain

when carrying out 500,000 requests with 100 requests being carried out concurrently

• John the Ripper: benchmarks of how many Blowfish computations can be done per second

www.manaraa.com

19

• OpenSSL: measures the RSA 4096-bit encryption and decryption performance

• Stream: benchmarks system RAM read and write performance

• Unpack: measures the amount of time it takes to extract content from a .tar.bz2 archive

Each of these benchmarks was executed on virtual machines running on both the Xen and

KVM hypervisors. Virtual machines running the Xen hypervisor were running RHEL 5.3 and

virtual machines running on the KVM hypervisor were running RHEL 6. Both had fresh

images created solely for running these benchmarks and each virtual machine was allocated

2GB of RAM. Additionally, no other virtual machines were running on the hosts other than

the machines actively running the benchmarks. Since Xen supports both the paravirtulization

(PV) and hardware-assisted virtualization (HVM) each of these operating modes were tested

to aid in the comparison against KVM.

In order to insure repeatability and ease of execution a stack scripts was created which

would, in part, insure that the benchmarks ran concurrently on each virtual machine being

tested, making use of the Linux ”at” command, and would automatically upload the results

to an FTP repository upon completion. The scripts also insured that all running benchmarks

completed and uploaded their results prior to setting up and executing the next test.

6.2 Xen and KVM with and without VirtIO

Each of the five benchmarks was executed simultaneously on an increasing number of virtual

machines from 1 to 10 to determine how the performance degrades as the host’s load increases

for the various benchmarks. Due to KVM’s multiple options for storing hard disk images and

presenting them to the virtual machine two sets were executed on KVM one with the virtual

machines using the VirtIO drivers and another with the virtual disk drive connected as an IDE

disk. Both KVM options used copy-on-write image files while Xen used RAW image files.

6.2.1 Ideal lines

Many of the Figures in the next sections include an ideal line which helps indicate how

an ”ideal” hypervisor should behave when adding additional CPU or memory intensive virtual

www.manaraa.com

20

machines. The Ideal line assumes minimal or no hypervisor overhead and that once a virtual

machine starts it is pinned to a specific processing core.

Since the physical servers in the testing environment contain four processing core the ideal

lines show that the results from tests with up to and including four running virtual machines

should be equal. This comes from the fact that each virtual machine will have a processing core

dedicated solely to itself. Once more than one virtual machine is active on a core processing

time is divided equally between all the virtual machines on that core. Additionally, if another

virtual machine is activated it will be pinned to the processing core containing the fewest

number of active virtual machines. The average performance of all active virtual machines is

then calculated based on this division of load and included in the various figures.

6.2.2 Apache Benchmark

The Apache Benchmark is designed to test the performance a given server can provide. It

does this by stressing a given server to determine how many requests per second it is able to

handle. The version of the benchmark that is included with PTS attempts to execute 500,000

requests to the server 100 requests at a time. It then measures how many request per second

the system is able to sustain.

This benchmark was chosen as it gives a good idea how the hypervisor is able to handle

increasing I/O stress in terms of CPU and memory usage as the number of virtual machines

increases. Figure 6.1 shows how increasing the number of virtual machines affects the per-

formance of the other. According to the chart the Xen PV configuration is least affected by

the increasing number of running virtual machines and most closely matches the ideal line.

However, as can be seen in Table 6.1 the standard deviation increases significantly for Xen PV

when more than a one virtual machine is running on each CPU core. This can indicate that the

hypervisor is not necessarily allocating equal amount of execution time to each virtual machine

allowing some to perform better than others.

Both KVM configurations behave similarly as additional virtual machines are added; with

the VirtIO enabled virtual machines performing slightly better than the other KVM configura-

tion. The constant underperforming configuration, Xen HVM, is interesting in that the results

www.manaraa.com

21

Figure 6.1 Apache Benchmark Results

Xen PV Xen HVM KVM w/ VirtIO KVM w/o VirtIO

VMs
Average Standard Average Standard Average Standard Average Standard
(Req/Sec) Deviation (Req/Sec) Deviation (Req/Sec) Deviation (Req/Sec) Deviation

1 3531.0 1639.3 3455.0 3222.0

2 3488.0 49.5 2409.1 447.6 3323.5 3.5 3033.5 4.9

4 3292.0 101.4 2295.8 159.3 2511.8 308.3 2235.8 113.8

6 2308.7 337.3 1042.8 157.9 1580.5 108.8 1369.5 60.8

8 1839.4 416.0 827.6 184.1 999.9 125.4 931.1 67.3

10 1543.3 445.3 619.0 160.6 621.1 42.9 762.3 98.0

Table 6.1 Apache Benchmark Data: Requests per Second (Average per VM) and Standard
Deviation

from a single active virtual machine is worse than with two or four active virtual machines.

The same set of tests was run multiple times with similar results each time. This could be

cause by some type of issue within PTS or possibly in the way Xen is handling and managing

the HVM virtual machines.

This benchmark shows that under the conditions of its test that the paravirtualization

within Xen has the capability of performing better but the appearance of higher performance

can be offset by the much higher standard deviation within the Xen PV results.

www.manaraa.com

22

6.2.3 John the Ripper

The John the Ripper benchmark is used to test how the various hypervisors perform under

very calculation intensive operations. In this particular PTS test the number of Blowfish

calculations per second is measured. Each time the John the Ripper test is executed the PTS

will run the benchmark three times and then average those values to get its final result for that

run. The PTS result for one virtual machine is then averaged with the other active virtual

machines on that hypervisor, if any, running for that test.

Figure 6.2 John the Ripper Benchmark Results

Xen PV Xen HVM KVM w/ VirtIO KVM w/o VirtIO

VMs
Average Standard Average Standard Average Standard Average Standard
(BF/Sec) Deviation (BF/Sec) Deviation (BF/Sec) Deviation (BF/Sec) Deviation

1 322 310 397 398

2 319 2.8 310 1.4 399 4.2 397 4.2

4 321 0.8 308.5 1.9 363.3 7.9 365.3 23.6

6 320 1.0 233.7 17.4 290.5 40.3 269 14.9

8 218 17.7 180.9 12.0 229.9 28.9 220.3 35.0

10 175 27.9 144.6 13.1 199 35.9 193.5 58.3

Table 6.2 John The Ripper Benchmark Data: Blowfish Computations per Second (Average
per VM) and Standard Deviation

The results from John the Ripper test can be seen in Figure 6.2. The ideal line is include

and is calculated as specified in section 6.2.1. From Figure 6.2 and Table 6.2 it can be seen that

www.manaraa.com

23

the KVM configurations tended to have a higher average Blowfish computations per second

per virtual machine than Xen in all cases except when six virtual machines were active. The

trend in the other configurations make it look like the Xen PV with six virtual machines is an

error. However, the standard deviation for this run is very low compared to the others and

for verification another PTS run was made in this configuration providing similar results. This

bump could be attributed to the way the hypervisor’s scheduler is switching between virtual

machines or some other anomaly within the PTS test itself.

6.2.4 Unpack

The Unpack benchmark from PTS measures the time required to extract a Linux kernel

from a tar.bz2 archive. This benchmark’s performance is mainly a factor of disk read/write

speed but the CPU is also a factor to uncompress the bz2 archive.

Once again, the Xen PV outperforms the other configurations which was expected since the

guest OSs have been optimized for the paravirtualized I/O environment. Xen HVM being the

worst performing was expected since Xen HVM creates a loopback device in Dom0 for each

HVM virtual machine disk adding additional overhead.

Figure 6.3 Kernel Unpack Benchmark Results

www.manaraa.com

24

Xen PV Xen HVM KVM w/ VirtIO KVM w/o VirtIO

VMs
Average Standard Average Standard Average Standard Average Standard
(Seconds) Deviation (Seconds) Deviation (Seconds) Deviation (Seconds) Deviation

1 27.4 40.2 41.6 37.3

2 30.2 0.45 46.2 3.02 41.3 7.02 39.2 0.79

4 39.5 2.99 59.9 9.02 54.1 14.0 52.8 3.90

6 45.7 5.30 78.5 23.5 66.3 22.4 62.2 12.4

8 69.3 7.41 97.3 14.3 87.5 26.2 76.4 18.9

10 87.7 12.81 92.4 17.6 118.2 27.1 95.6 18.3

Table 6.3 Kernel Unpack Benchmark Data: Time (Seconds) to Extract (Average per VM)
and Standard Deviation

What was not expected was that KVM without VirtIO drivers consistently performed

slightly better than KVM with VirtIO drivers. Since the VirtIO drivers provide the virtual

machine with a more paravirtualized method of accessing block (disk) and network devices

one would expect them to perform better then without the assistance of the paravirtualized

interface.

There are a few explainations of this behavior. One is how VirtIO does disk caching.

Several disk caching modes exist within KVM (off, write through, and write back) each of

which performs differently under various conditions. Another possible explainations is RAW

image files vs copy-on-write disk files. Since KVM was using copy-on-write disk files this could

affect the virtual disk performance especially on write operations when compared to the Xen

RAW image files.

6.2.5 Stream

The Stream benchmark in PTS is built from a program which was designed to measure

the sustainable memory bandwidth rather than burst or peak performance of a machine. The

Stream benchmark has four operating modes: copy, scale, sum, triad. In this test, only the copy

mode was used as the other three tests rely more heavily on the CPU to do some computations

on the data being before writing it to memory. This is in contrast to copy which measures

transfer rates without doing any additional arithmetic, it instead copies a large array from one

location to another. The benchmark specifies the array so that it is larger than the cache of

the machine and structured so that data re-use is not possible. [11]

Results from this test are in Figure 6.4 and Table 6.4. For this test instead of an ideal line

www.manaraa.com

25

Figure 6.4 Stream Benchmark Results

Xen PV Xen HVM KVM w/ VirtIO KVM w/o VirtIO

VMs
Average Standard Average Standard Average Standard Average Standard
(MBps) Deviation (MBps) Deviation (MBps) Deviation (MBps) Deviation

1 2432.0 2359.5 2234 2157.0

2 2418.8 11.14 2379.7 10.97 2197 16.26 2107.0 25.46

4 2417.5 36.60 2236.7 78.39 2241 5.72 2106.3 21.96

6 2454.5 10.69 2323.9 4.65 2221 9.61 1975.8 111.5

8 2440.6 16.98 2084.5 58.60 2196 50.21 2069.8 38.80

10 2393.2 127.3 1899.0 155.8 2216 9.62 1993.3 118.2

Table 6.4 Stream Benchmark Data: MegaBytes per Second (Average per VM) and Standard
Deviation

being calculated, the benchmark was run on the KVM host machine to aid in determining the

hypervisor induced overhead. As expected the host machine is able to significantly outperform

the virtual machines.

The various Xen and KVM configurations average throughput per virtual machine remained

fairly consistent as the number of virtual machines increases. This is especially true when

compared to the relative drop off of some of the other PTS tests. This shows that the hypervisor

is able to equally distribute memory access resources between the active virtual machines on

the system.

www.manaraa.com

26

From Figure 6.4 it’s easy to see that the throughput of the data bus is not the issue affecting

the performance. Instead, the reduced throughput of the virtual machines is most likely caused

by hypervisor related overhead. Each time the virtual machine attempts to access memory the

hypervisor must translate that access to a physical memory address on the host adding some

delay. Additionally, the hypervisor must constantly switch between which virtual machine to

serve at a given time constantly refreshing the physical host’s cache.

6.2.6 OpenSSL

OpenSSL is another computation benchmark within PTS. This particular test uses the open

source OpenSSL toolkit to measure the performance of signing and verifying using 4096bit

RSA operations. The results of this test are in Figure 6.5 and Table 6.5. KVM and Xen HVM

stay fairly consistent as the number of virtual machines increases with a minimal decrease in

performance. Additionally, the low standard deviation indicates that the hypervisors are able

to fairly allocated resources between the active virtual machines.

Figure 6.5 OpenSSL Benchmark Results

According to the data the Xen PV performance increases as multiple virtual machines are

assigned to each processing core. However, the standard deviation also increases significantly

www.manaraa.com

27

Xen PV Xen HVM KVM w/ VirtIO KVM w/o VirtIO

VMs
Average Standard Average Standard Average Standard Average Standard
(RSA/S.) Deviation (RSA/S.) Deviation (RSA/S.) Deviation (RSA/S.) Deviation

1 23.4 22.68 22.6 22.43

2 23.4 0.00 22.64 0.014 22.5 0.049 22.31 0.177

4 23.3325 0.05 22.48 0.067 21.8 0.293 21.48 0.178

6 28.39 3.27 22.26 0.102 19.7 1.346 18.75 1.008

8 43.68143 13.36 21.62 0.351 16.7 1.516 17.72 0.971

10 38.805 25.09 20.87 0.258 15.1 2.103 17.25 1.487

Table 6.5 OpenSSL Benchmark Data: RSA Computations per Second (Average per VM) and
Standard Deviation

for these as well to the point where it is over 50% of the average computations per virtual

machine. This behavior is not practical and required further investigation.

6.2.6.1 OpenSSL PTS Details

The OpenSSL test will run and count how many times it can do 4096 bit RSA operations

in 10 seconds. Each time the OpenSSL PTS benchmark is executed the suite will run this

OpenSSL test four times, average the results and present the average as the benchmark’s result

for that virtual machine. This benchmark result is then averaged with the benchmark results

from all other active virtual machines to get the average per virtual machine included in the

graph.

6.2.6.2 Erroneous Results

Looking more closely at the Xen PV OpenSSL test results from when greater than four

virtual machines are active there are several results which are not practical and skew the

results.

Typical Results Erroneous Results

124 4096 bit private RSA’s in 5.62s 125 4096 bit private RSA’s in 0.00s

125 4096 bit private RSA’s in 5.53s 123 4096 bit private RSA’s in 0.00s

125 4096 bit private RSA’s in 5.04s 125 4096 bit private RSA’s in 0.59s

114 4096 bit private RSA’s in 5.34s 125 4096 bit private RSA’s in 0.80s

Table 6.6 Sample typical and erroneous results from the OpenSSL tests

In Table 6.6 the first two results under Erroneous Results are obviously not valid as it would

be impossible for the computations to be completed in 0.00 seconds. Even the following two

www.manaraa.com

28

are difficult to believe as they calculate out to be over 150 RSA operations per second, still

significantly high campared to the typical results..

6.2.6.3 Further Investigation

Upon further investigation it was determined that under certain circumstances Linux virtual

machines can have clock and time synchronization issues on various hypervisors. There was

one specific example explained in [14] where when issuing the ”date” command multiple times

in a row running ”date;date;date;date;date;date;date” the returned time would switch between

40 seconds and 48 seconds every other execution. To help mitigate this particular problem

a knowledge base page [9] from VMware, another virtualization provider, was used which

provided kernel parameters for several flavors of Linux to ”achieve best timekeeping results”.

As a test, the provided Kernel parameter for RHEL 5.3, ”divider=10 clocksource=acpi pm”,

was added to the Xen PV virtual machines and the OpenSSL benchmark was re-run with 6, 8,

and 10 active virtual machines.

6.2.6.4 OpenSSL Modified Results

Table 6.7 contains the results of the new and original Xen PV results alongside the KVM

with VirtIO values for comparison. The standard deviation for the modified Xen PV is signifi-

cantly better for eight and ten active virtual machine but is still not as good as the KVM test

as illustrated in Figure 6.6.

Xen PV Xen PV with Parameter KVM w/ VirtIO

VMs
Average Standard Average Standard Average Standard

(RSA/Sec) Deviation (RSA/Sec) Deviation (RSA/Sec) Deviation

6 28.39 3.27 31.36 5.02 19.7 1.346

8 43.68143 13.36 22.275 5.68 16.7 1.516

10 38.805 25.09 22.69 4.29 15.1 2.103

Table 6.7 OpenSSL Benchmark Data: with and without Kernel parameter

6.3 Simulated Users

While high performance and throughput is important in some applications many times,

including in Xen Worlds, one is willing to sacrifice some of that performance if virtual machine

www.manaraa.com

29

Figure 6.6 OpenSSL Benchmark with and without Kernel parameter

density can be increased. This was one of the primary goals driving the original development

of Xen Worlds [2], to optimize hardware utilization without making a noticeable effect on the

user experience. The original developers made use of Expect scripts in an effort to gauge the

environment’s responsiveness under regular user operating conditions. Similar Expect scripts

were used again to compare the responsiveness of KVM and Xen from the user’s perspective.

Ten Expect scripts, based on the original scripts used in [2], were created which simulate

how a typical user might interact with the Xen Worlds environment while completing a lab

assignment.

The Expect scripts connect, via SSH, to the lab and navigate the Pdmenu menu interface

to select a virtual machine, just as a regular user would. Each of the ten scripts then perform

a unique combination of the following commands. In addition each script will, at least once,

return to the Pdmenu and select a different virtual machine on which to continue its execution.

Each of the Expect scripts include a sub-set of these commands:

• List a directory contents

• Change the working directory

www.manaraa.com

30

• Use ”cat” view the /etc/passwd file

• Use ”ps aux” to list current system processes

• Use ”netstat” to print network connection

• Run a string reversal program

• Run a ”Hello World” program

As in [2] the parameter ”set send human .1 .3 1 .05 2” was used within each Expect script

which, according to the Expect manual page, will adjust the speed of the text input to a rate

similar to a human typing.

6.3.1 Goal of the Expect Scripts

The PTS benchmarks are a valid test to determine how virtual machines performance and

throughput varies as the number of virtual machines performing the same computationally or

I/O intensive task changes. In a virtual environment it is very rare for virtual machines to

be performing identical tasks trying to max out the physical host. This is especially true in

with Xen Worlds. It is very rare that deployed User Worlds will be actively and continuously

engaged in intensive tasks.

The goal of the Expect Scripts is to gauge how well the two hypervisors are able to isolate

one virtual machine from another. This is not isolation in the traditional sense, network and

security, instead performance isolation relating to how the operations of one virtual machine

affect the performance and responsiveness of others running on the same host. For example, if

a user is running John the Ripper to crack passwords on one virtual machine, Expect scripts

measure how well the hypervisor is able to minimize it’s affect on the responsiveness of another

user’s virtual machine. This becomes especially important as the number of active Worlds on

each physical host increases.

www.manaraa.com

31

6.3.2 The Test Environment

To carry out the tests Xen User Worlds, each consisting of a set of three virtual machines

networked together, were deployed on both Xen and KVM for an varying number of simulated

users. This was done in the same way a Xen Worlds assignment would be deployed to a group

of users. Again, Xen’s virtual machines are running RHEL 5.3 and KVM’s virtual machines are

running RHEL 6. The virtual machines on both hypervisors this time are only alloacted 128

MB of RAM, the typical amount for the Xen Worlds environment. The results are determined

by the amount of time it takes the Expect script to finish executing. Each test was carried out

10 times before the number of User Worlds was changed for the next set of tests.

6.3.3 Concurrent Users Test

For this concurrent users test the number of active users ranges from 1 to 10 results of

which can be found in Table 6.8. Ideally, increasing the number of User Worlds should have

minimal effect on the responsiveness of the virtual machines and thus the execution time of

the Expect scripts. From Figure 6.7 it can be seen that both Xen implementations had some

issues. In several of the tests, especially as the number of users increases, some executions of

the Expect scripts would timeout after selecting a new virtual machine at the Pdmenu and

waiting for that virtual machine to respond with a prompt. In order to reduce the influence

these timeouts have on the graph, an ”adjusted” plot was added for both Xen PV and Xen

HVM which remove any times greater than 5 minutes from the averages.

KVM Xen PV Xen HVM Xen PV Xen HVM

User Average Standard Average Standard Average Standard Adjusted Adjusted
Worlds (Sec) Deviation (Sec) Deviation (Sec) Deviation Average Average

1 114.598 2.797 124.354 2.557 135.388 5.390 124.354 135.388

2 118.833 4.776 125.473 4.721 135.796 3.521 125.473 135.796

3 117.435 3.662 135.385 45.022 135.875 4.306 127.239 135.875

4 116.843 3.704 211.983 161.059 137.464 4.436 142.027 137.464

5 116.717 3.538 181.530 134.810 139.485 4.445 136.121 139.485

6 116.731 3.419 284.131 197.955 154.179 82.039 161.683 143.604

7 116.474 4.000 149.307 19.922 152.799 5.645 149.307 152.799

8 117.189 4.122 182.246 106.437 216.070 132.557 159.020 168.255

9 116.839 3.833 197.552 104.064 230.527 93.714 157.216 201.812

10 117.529 3.735 266.339 168.129 528.007 233.679 175.798 224.272

Table 6.8 Simulated Concurrent User Responsiveness Data: Average execution time (sec) and
Standard Deviation

www.manaraa.com

32

Figure 6.7 Simulated Concurrent User Responsiveness

Even when compared to the adjusted averages KVM has a significant advantage over Xen in

guest performance isolation experiencing little slowdown as the number of active users increased,

indicating that KVM has a better scaling potential in a Xen Worlds environment.

6.3.4 Single User with varying John the Ripper

Given the nature of the Xen Worlds assignments, there are situations when a user may

want to occasionally run computationally intensive applications, like John the Ripper, on their

virtual machine. This test measures the responsiveness of a single User World, using the same

Expect script, as before in the event that other users are concurrently running John the Ripper.

Figure 6.8 shows how increasing the number of virtual machines running John the Ripper affects

other users. Once again KVM stays fairly consistent when compared to Xen with execution

time increasing only a few seconds as the number of active John the Ripper virtual machines

increases. The data in Table 6.9 shows that the standard deviation for all of the tests, both

Xen and KVM, stays fairly consistent even as the computational stress is increased.

www.manaraa.com

33

Figure 6.8 Single Simulated User, varying John the Ripper

KVM Xen PV Xen HVM

JTR Average Standard Average Standard Average Standard
VMs (Sec) Deviation (Sec) Deviation (Sec) Deviation

0 115.819 3.806 119.589 2.955 123.388 5.390

1 117.668 4.184 118.924 3.764 119.919 2.768

2 115.957 2.660 119.635 3.699 122.977 4.653

3 116.665 3.141 121.051 2.060 125.205 3.254

4 116.740 3.646 120.180 3.561 128.071 2.756

5 117.305 2.999 122.005 2.690 129.383 3.274

6 118.710 3.459 120.848 1.633 133.816 3.614

7 116.977 3.635 122.667 3.203 136.580 4.620

8 118.793 3.569 124.871 3.148 139.398 4.278

9 118.358 3.121 127.261 3.421 141.229 3.299

10 119.527 3.826 129.610 2.428 145.294 4.002

Table 6.9 Single Simulated User with varying John the Ripper: Average exection time (sec)

www.manaraa.com

34

6.3.5 Multi User consistent John the Ripper

In a variation of the previous tests, a constant four virtual machines running John the

Ripper were created, one for each processing core, and the number of User Worlds was varied

from 1 to 10. The goal of this is to see how well the hypervisor performed when there is an

active load on each processing core. As indicated in Table 6.10 and Figure 6.9 KVM is still able

to stay fairly consistent compared to Xen. Once again Xen PV experienced similar timeout

issues and the adjusted values in the table and figure have any times over 5 minutes removed

from their averages.

Figure 6.9 Consistent (4) John the Ripper, varying Simulated Users

KVM Xen PV

User Average Standard Average Standard Adjusted
Worlds (Sec) Deviation (Sec) Deviation Average

1 117.514 3.011 138.910 2.974 138.910

4 118.363 3.164 250.039 179.139 164.424

8 118.418 3.190 319.671 160.892 221.983

10 119.500 3.462 500.042 209.479 257.531

Table 6.10 Consistent (4) John the Ripper, varying Simulated Users: Average exection time
(sec)

www.manaraa.com

35

6.3.6 KVM: Increasing John the Ripper

Given how well KVM was able to maintain relatively consistent performance in the previous

tests as the number of User Worlds and John the Ripper virtual machines increased another set

test was created to see how well it continued to perform. This test, only done on KVM, varies

the number of User Worlds from 1 to 10 and also varies the number of John the Ripper virtual

machines from 0 to 12. The goal of this is to determine at what point KVM will no longer

be able to handle the load and experience a drastic decrease in virtual machine responsiveness

and isolation preformance.

Figure 6.10 KVM only: varying Simulated Users and varying John the Ripper

No John the Ripper 4 John the Ripper 8 John the Ripper 12 John the Ripper

User Average Standard Average Standard Average Standard Average Standard
Worlds (Sec) Deviation (Sec) Deviation (Sec) Deviation (Sec) Deviation

1 114.598 2.797 117.514 3.011 119.752 2.760 121.443 4.153

4 116.843 3.704 118.363 3.164 119.011 3.307 122.576 3.092

8 117.189 4.122 118.418 3.190 119.408 3.659 120.572 3.319

10 117.529 3.735 119.500 3.462 120.207 3.432 120.522 3.858

Table 6.11 KVM only: varying Simulated Users and varying John the Ripper: Average exec-
tion time (sec)

www.manaraa.com

36

The data in Table 6.11 and Figure 6.10 shows KVM is still able to stay fairly consistent

as the load increases. As expected, the data points primarily shift upward a few seconds each

time an additional four John the Ripper virtual machines are added. Even when 12 John the

Ripper and 10 user worlds are active for a total of 42 running virtual machines KVM is able

to maintain very good relative performance and a low standard deviation.

6.4 Results Conclusion

The test conducted in this chapter shows that both KVM and Xen have different perfor-

mance benefits in different situations. The PTS benchmarks give the indication that Xen PV

tends to outperform KVM in disk and I/O related scenarios. This would be expected in the

paravirtualized environment since guest operating systems are modified to work specifically

in such an environment and in the modification process can be better optimized for the en-

vironment. KVM tended to perform better in computationally intensive operations like the

John-the-Ripper and OpenSSL PTS tests. In these tests KVM was also able to keep the

standard deviation relatively low.

The scenarios where KVM undoubtedly excelled were in the simulated user tests. The

execution of the Expect scripts present KVM as a clear leader in virtual machine performance

isolation especially in a Xen Worlds like environment. In almost all of the scenarios KVM is able

to maintain consistent execution times supported by the relatively low and consistent standard

deviations. This is most likely due to the method KVM uses to manage its virtualization

by making use of very mature and time tested components of the standard Linux kernel for

components such as memory management and scheduling.

www.manaraa.com

37

CHAPTER 7. SPECIAL XEN WORLDS CONSIDERATIONS

Hypervisor and end user performance is not the only aspect to consider when evaluating

a virtualization platform for a lab environment. Simplicity of deploying and managing labs

is also important especially as class size and lab complexity grows. In this chapter a few

performance related changes to the Xen Worlds Middleware that were done during the Xen to

KVM conversion will be analyzed.

7.1 Disk Utilization

One of the most desired feature additions made available from the migration from Xen

to KVM was copy-on-write image files. This has greatly reduced the amount of disk space

required to store virtual disk images. As stated in section 4.2 copy-on-write images allow for

multiple overlay images to be created using a single base image. This allows for an overlay

image to be created for each deployed virtual machine instead of requiring a full copy.

Depending on the lab, a Xen hypervisor based virtual machine image file ranges from

1.5GB to 3GB. Figure 7.1 illustrates how as the number of virtual machines increase so does

the required disk space. The figure assumes a 1.5GB base image for both Xen and KVM.

With KVM using copy-on-write images disk space required for each virtual machine will vary

depending on the assignment and how much writing to the disk done by the individual user.

The KVM: Fresh Deployment line indicates disk usage immediately after the lab is deployed

and configured. At this point each virtual machine’s overlay image is about 19MB (this includes

a snapshot of the virtual machine in its current state). Depending on the characteristics of

the assignment the overlay images will likely increase as the user performs the assignment. In

Figure 7.1 KVM: 200MB User Data is shown to give an indication of what disk usage would

www.manaraa.com

38

Figure 7.1 Disk usage requirements KVM copy-on-write vs Xen full copy

be if 200MB of user data is added to each of the overlay images. Since Xen does a full of copy

of the base image its disk utilization doesn’t increase as the virtual machines are used.

Given that some of the current labs require three virtual machines for each user, 120 de-

ployed virtual machines at once is not unreasonable. In some cases multiple assignments could

be deployed at once with only one being active further increasing the required disk space.

7.2 Deployment Time

In the Xen hypervisor implementation of the Xen Worlds Middleware it takes almost 2

hours to deploy and configure a lab with three virtual machines to 10 users. Given this it can

take all day to deploy a lab to an entire class. This time can be attributed to several factors

including:

1. Each virtual machine requiring a full copy of the base image.

2. Starting each virtual machine during deployment in order to make lab and user specific

customizations via an Expect script.

www.manaraa.com

39

3. Consecutive deployment and configuration of each virtual machine.

4. Intentional delays to help prevent race conditions on the Xen hypervisor.

Each of the above factors was analyzed and at least partially mitigated when migrating to KVM

to the point where deploying the same three virtual machine lab to 10 users now takes about

5 and a half minutes compared to the 2 hours with the Xen implementation. The following

approaches were used to reduce the deployment and configuration time commitment.

1. Copy-on-write images: almost instantaneous creation of an overlay image.

2. Direct modification of the virtual machine image and using the rc.local file within Red

Hat to configure the virtual machine on its first boot instead of during deployment.

3. Process-based parallelism: multiple processes are spawned to deploy up to 6 virtual ma-

chines at once.

4. Removal or reduction of the intentional delays within the middleware.

7.3 Per-User Customization of Pdmenu

The Xen based implementation required the administrator to manually modify the Pdmenu

global configuration file each time a new assignment is deployed and when an assignment is

removed. This can be troublesome especially since it is a global file and any changes affect all

users. It can also result in added confusion because if, for example, assignment A is deployed

to group 1 and assignment B to group 2 the Pdmenus will display options for both assignments

to both groups. In this case, depending on the group, one of the options will return an error

when attempting to access an invalid assignment.

In the KVM implementation the Pdmenu is dynamically generated for each user based on

the labs that are currently deployed to that specific user. The administrator no longer needs

to manually modify the Pdmenu files, greatly simplifying management.

www.manaraa.com

40

CHAPTER 8. CONCLUSION & FUTURE WORK

While Xen may be a more well known hypervisor from the evaluations performed here

KVM certainly has what it takes to give it a run for its money. This is especially true for a lab

environment such as Xen Worlds. KVM is able to provide far superior performance isolation

between virtual machines and does not require modifications to the guest operating system.

In order to conduct these test the Xen Worlds Middleware and labs were migrated or rebuilt

so they could be used on the KVM platform to provide an equivalent ground for evaluation. Two

classes of tests were performed throughput performance and simulated users. Paravirtualized

Xen tends to outperform KVM in I/O type tests. The opposite is true in the simulated

user responsiveness tests where KVM is able to better isolate CPU intensive virtual machines

mitigating their affect on other virtual machines. This is a very important factor in the Xen

Worlds lab environment.

Through the process of migrating the Xen Worlds Middleware to KVM, the Middleware

was also enhanced to make use of KVM’s expanded feature set and capabilities such as copy-

on-write images and snapshots. This has significantly reduced the time required to deploy labs

within the environment simplifying management.

There are still several enhancements that could be performed to both expand on the eval-

uation of the KVM hypervisor for use in a lab environment and to expand the feature set

of Xen Worlds running on KVM. KVM has a number of features such as Kernel Samepage

Merging (KSM) which can be very useful in a lab environment especially on host systems with

more constrained memory. Additionally, KVM can be used with SELinux enabled on the host

which can further help isolate virtual machines from each other and help prevent tampering,

accidential or intentional, with virtual guests and their image files.

On the Xen Worlds features side, additional labs could be developed possible even a vir-

www.manaraa.com

41

tualization lab. Limited testing of runing the Xen hypervisor within KVM was done by the

author to determine that it is technically possibly to run a Xen Dom0 as a KVM guest. Fur-

ther lab development could be done using the Windows operating system, although this would

also require developing a method for accessing the Windows console as the current Pdmenu

interface would not suffice.

Further work could also be done on implementing a cluster ability to Xen Worlds. This

could allow for easily expanding the environment by network booting additional host machines

and utilizing KVM’s live migration ability to actively load balance between the various hosts.

www.manaraa.com

42

BIBLIOGRAPHY

[1] Benjamin Anderson. Xen worlds project. http://home.eng.iastate.edu/~hawklan/

xw-index.html, 2009.

[2] Benjamin Anderson. Xen worlds: Creating a virtual laboratory environment for use in

education. Master’s thesis, Iowa State University, 2010.

[3] Red hat bugzilla - bug 486353. https://bugzilla.redhat.com/show_bug.cgi?id=

486353, 2009.

[4] Intel Corporation. Enhanced virtualization on intel architecture-based servers. Technical

report, Intel Solutions, March 2005.

[5] Todd Deshane, Zachary Shepherd, Jeanna N. Matthews, Muli Ben-Yehuda, Amit Shah,

and Balaji Rao. Quantitative comparison of xen and kvm. Xen Summit,, June 2008.

[6] Red Hat Inc. Red Hat Enterprise Linux 6 Virtualization Guide, 2008,2009,2010.

[7] Red Hat Inc. Kvm - kernel based virtual machine. Technical report, Red Hat Inc., 2009.

[8] VMware Inc. Understanding full virtulization, paravirtualization, and hardware assist.

Technical report, VMware Inc., 2007.

[9] VMware Inc. Timekeeping best practices for linux guests. http://kb.vmware.com/

selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=

1006427, 2011.

[10] VMware Inc. Transform your business with virtualization. http://www.vmware.com/

virtualization/history.html, 2011.

http://home.eng.iastate.edu/~hawklan/xw-index.html
http://home.eng.iastate.edu/~hawklan/xw-index.html
https://bugzilla.redhat.com/show_bug.cgi?id=486353
https://bugzilla.redhat.com/show_bug.cgi?id=486353
http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1006427
http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1006427
http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1006427
http://www.vmware.com/virtualization/history.html
http://www.vmware.com/virtualization/history.html

www.manaraa.com

43

[11] John D. McCalpin. Stream: Sustainable memory bandwidth in high performance comput-

ers. http://www.cs.virginia.edu/stream/.

[12] Phoronix Media. Phoronix test suite. http://www.phoronix-test-suite.com, 2008 -

2011.

[13] Redhat enterprise linux 6 xen 4.0 tutorial. http://wiki.xen.org/xenwiki/

RHEL6Xen4Tutorial, 2005-2011.

[14] Weird fluctuating time on a xen linux guest. http://serverfault.com/questions/

116637/weird-fluctuating-time-on-a-xen-linux-guest.

[15] Amit Singh. An introduction to virtualization. http://www.kernelthread.com/

publications/virtualization/, 2004.

[16] What is xen hypervisor? http://www.xen.org/files/Marketing/WhatisXen.pdf, 2005-

2011.

[17] Why xen? http://www.xen.org/files/Marketing/WhyXen.pdf, 2005-2011.

http://www.cs.virginia.edu/stream/
http://www.phoronix-test-suite.com
http://wiki.xen.org/xenwiki/RHEL6Xen4Tutorial
http://wiki.xen.org/xenwiki/RHEL6Xen4Tutorial
http://serverfault.com/questions/116637/weird-fluctuating-time-on-a-xen-linux-guest
http://serverfault.com/questions/116637/weird-fluctuating-time-on-a-xen-linux-guest
http://www.kernelthread.com/publications/virtualization/
http://www.kernelthread.com/publications/virtualization/
http://www.xen.org/files/Marketing/WhatisXen.pdf
http://www.xen.org/files/Marketing/WhyXen.pdf

	2011
	A performance analysis of Xen and KVM hypervisors for hosting the Xen Worlds Project
	Charles David Graziano
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	1. OVERVIEW
	1.1 Introduction

	2. WHAT IS VIRTUALIZATION
	2.1 Types of x86 Virtualization
	2.1.1 Application Virtualization
	2.1.2 Operating System Virtualization

	2.2 Components of Virtualization
	2.2.1 Hypervisor
	2.2.2 Guest

	2.3 Why Virtualize
	2.3.1 Infrastructure as a Service

	3. THE HYPERVISORS
	3.1 Xen
	3.2 Kernel-based Virtual Machine

	4. XEN WORLDS BACKGROUND
	4.1 Why KVM
	4.2 Major Feature differences

	5. MIGRATING TO KVM
	5.1 Migrating Middleware
	5.2 Migrating User Interface Pdmenu
	5.3 Migrating Labs VMs

	6. EVALUATING KVM'S PERFORMANCE
	6.1 Phoronix Test Suite
	6.2 Xen and KVM with and without VirtIO
	6.2.1 Ideal lines
	6.2.2 Apache Benchmark
	6.2.3 John the Ripper
	6.2.4 Unpack
	6.2.5 Stream
	6.2.6 OpenSSL

	6.3 Simulated Users
	6.3.1 Goal of the Expect Scripts
	6.3.2 The Test Environment
	6.3.3 Concurrent Users Test
	6.3.4 Single User with varying John the Ripper
	6.3.5 Multi User consistent John the Ripper
	6.3.6 KVM: Increasing John the Ripper

	6.4 Results Conclusion

	7. SPECIAL XEN WORLDS CONSIDERATIONS
	7.1 Disk Utilization
	7.2 Deployment Time
	7.3 Per-User Customization of Pdmenu

	8. CONCLUSION & FUTURE WORK
	BIBLIOGRAPHY

